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Problem formulation
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“ polyhedral meshes are preferable for some CFD applications

“ moving mesh methods (Lagrangian, ALE) result in non-planar faces

@ unlimited possibilities for mesh generation
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Problem formulation (cont.)

10° ¢ .
10_1;~ g
5 :
2 107 ]
o [
E [
o L
C L
_IN
-3
< 10 3 3
(] [
S [
107" -
i | —©— MFD: pressure
| —©—MFE: pressure
‘| =%— MFD: velocity
| =%— MFE: velocity
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@ the mixed FE method does not converge on randomly perturbed meshes
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Mimetic finite difference method

Continuum Problem MFD method
divii = b DIVu" = b"
u = —Vp u" = —GRADp"
wdiv=-V" m DIV = —-GRAD*

m ker(V)=constants

w ker(GRAD) = constants
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Mimetic finite difference method

V = —div” ker(V) = constants

Four-step methodology:

1. Define degrees of freedom for p" € Q}, and u” € X},
2. Discretize the divergence operator, DZYV
3. Equip discrete spaces with inner products |-, -|g and |-, ‘| x

4. Derive the gradient operator, GRAD, from discrete Green’s formula

GRAD = —D1IV* ker(GRAD) = constants
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p’ is constant on E

W p is the degree of freedom associated with element E
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u” is constant on faces of F

] u’} is the normal velocity component associated with face f
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Divergence operator

Divergence theorem:
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Inner products

“[p", q"lg= ) phap|E
EeQ)y,

] [’U,h, ’Uh]X = Z [’U,h, ’Uh]E

EeQ)y,
kE
h h E h _.h
[’U/ , U ]E = ME,i,j /U,fz Ufj
1,7=1

where Mz = Mg > 0 and kg is the number of faces of E.
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Gradient operator

» The Green formula
/ﬁon:—/pdivﬁ.
0 QO

» The discrete Green formula
[uh, QRADph]X — —[ph, DIV uh]Q

defines the gradient operator.
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solution algorithm results in a problem with the
SPD matrix

full diffusion tensor 1s easily incorporated into the
discretization methodology

2nd order accurate for pressure variable when
elements have planar (or slightly perturbed) faces

I st order accurate for velocity variable
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Our theory forbids:
anisotropic (stretched) elements
stretched faces
small 2D angles

Our theory allows:
regular meshes
degenerate elements

non-convex elements
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Polyhedral meshes

Problem similar to the above 2D problem

mesh L2 norm of error

SN R SRR m,i—é¥pressuref

1 - | —E—velocity |
10 = A - =
10 10
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Key element of the MFD method

[u, v E—ZMEH“JZ%
i,)=1

® Condition I: spectrally equivalent to a diagonal matrix:

(|E| \
Ly

W Condition II: exact for linear pressure p! (! = Vp! = const):

[(Vph, v E = —/ (DIVV") g + Z vf/

fEOFE

Mg ~

o Los Alamos p.15/2:
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Key element of the MFD method

kE

h pyh]  — E : h .h
[u ] (Y ]E — ME,i’j fU/fZ vfj
5,j=1

W Condition II: exact for linear pressure p! (@' = Vp! = const):

T A1 (0N () — (o))
L I ORI

: o
@ - g sl (0" (w6) — P (@)
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Key element of the MFD method

kE

h pyh]  — E : h .h
[u ] (Y ]E — ME)i’j fU/fZ vfj
5,j=1

W Condition II: take p' = x, then @ = (1, 0)% and

N1,z | f1] (w1 — o)
N2, f2| (2 — xo
| g | Ml
: O
I e,z | i \f6|(5136—330) ]
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Key element of the MFD method

1,7=1

[u ’U E — ZME%] fU/fZ 'Ufj

W Condition II: take p* = y, then @ = (0, 1)%

and

N1z Ny | f1] (1 — z0)
N2z N2y _ Mgl | f2] (22 — 7o)
i ne,x M6,y | i |f6| (xG — 330)

Npxo = Mz' Rexo

|f1| (yl — yo)
| f1] (y2 — o)
A1l (s —w0)

o Los Alamos p.15/2:
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Properties of matrices N and R

Lemma.
N'R =R'N = I,

Proof.
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Similarly,

0= [ Yy Via—a0) = [ (Vg @)~ o) = (N Rz,
E oOF

AAAAAAAAAAAAAAAAAA



Simple formula for M '

A solution to
N=M_"'R=WR
1S

W, = NN’

W check: WoR=NN'R=NI=N

@ wvalid for any polygon and any polyhedron with planar faces
m W =W >0

® general form for the solution i1s Wy + Wy where W; R = 0
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Simple formula for M ' (cont.)

Theorem. Let columns of D span ker(R'), i.e.

RTD =0 and DIR = 0.

Then,
M,' = NN +DUD'

is the SPD matrix for any U = U’ > 0.
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Simple formula for M ' (cont.)

M,' = NN’ +DUD"

Let D be symmetric orthogonal projector onto ker(R”)

and
1

U = ul, Uu=—.
E

Then

M;:NNT—FuD

= computing of Mgl requires (2d + 1)k% + 4d°kg
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Family of MFD methods

M,' = NN’ +DUD”

kp— gon

msizeof Uis kp — 2
w (kg — 1)(kg — 2)/2 free coefficients
» the same formula holds for polyhedral meshes

m straightforward generalization to full material tensor
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Strongly curved faces

W the mesh face f is called strongly curved if
L2 1/2 Y [
|7’L—Nf‘>0"f| Nfz— n.
ﬂﬁf |f| f

| @ 3 d.o.f. (3 components of a velocity vector)
A per strongly curved mesh face

— 1
h S o
u-Nf:—/u-n
d 1f1 g

and

1
u;’f.af,@-:—/a-af,i i=1,2.
1y

@ the matrix Mgl 1s generated as it was described above!
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Polyhedral meshes

mesh L_2 norm of error

W 68% of interior mesh

—o— MFD new: préséuke
—o— MFD old: pressure
—v— MFD new: velocity |1

—v— MFD old: velocity

faces are non-planar

107°L : S S N U I
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Recent and future developments

m use the family of MFD methods to attack other
computational problems

m extensions to other PDEs

= Jocal-flux MFD methods (with 1. Yotov)

@ Fluxes are connected in small groups around
mesh vertices. Thus,
uh = Q% p"
where Q% has a local stencil.
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For diffusion problems on unstructured polygonal
and polyhedral meshes, we developed a family of
mimetic finite difference methods with the following
properties:

methods are computationally cheap

they have optimal convergence rates

and result in SPD matrices
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